79 research outputs found

    Association of sub-acute changes in plasma amino acid levels with long-term brain pathologies in a rat model of moderate-severe traumatic brain injury.

    Get PDF
    INTRODUCTION Traumatic brain injury (TBI) induces a cascade of cellular alterations that are responsible for evolving secondary brain injuries. Changes in brain structure and function after TBI may occur in concert with dysbiosis and altered amino acid fermentation in the gut. Therefore, we hypothesized that subacute plasma amino acid levels could predict long-term microstructural outcomes as quantified using neurite orientation dispersion and density imaging (NODDI). METHODS Fourteen 8-10-week-old male rats were randomly assigned either to sham (n = 6) or a single moderate-severe TBI (n = 8) procedure targeting the primary somatosensory cortex. Venous blood samples were collected at days one, three, seven, and 60 post-procedure and NODDI imaging were carried out at day 60. Principal Component Regression analysis was used to identify time dependent plasma amino acid concentrations after in the subacute phase post-injury that predicted NODDI metric outcomes at day 60. RESULTS The TBI group had significantly increased plasma levels of glutamine, arginine, alanine, proline, tyrosine, valine, isoleucine, leucine, and phenylalanine at days three-seven post-injury. Higher levels of several neuroprotective amino acids, especially the branched-chain amino acids (valine, isoleucine, leucine) and phenylalanine, as well as serine, arginine, and asparagine at days three-seven post-injury were also associated with lower isotropic diffusion volume fraction measures in the ventricles and thus lesser ventricular dilation at day 60. DISCUSSION In the first such study, we examined the relationship between the long-term post-TBI microstructural outcomes across whole brain and the subacute changes in plasma amino acid concentrations. At days three to seven post-injury, we observed that increased plasma levels of several amino acids, particularly the branched-chain amino acids and phenylalanine, were associated with lesser degrees of ventriculomegaly and hydrocephalus TBI neuropathology at day 60 post-injury. The results imply that altered amino acid fermentation in the gut may mediate neuroprotection in the aftermath of TBI

    Functional networks and network perturbations in rodents

    Get PDF
    Synchronous low-frequency oscillation in the resting human brain has been found to form networks of functionally associated areas and hence has been widely used to map the functional connectivity of the brain using techniques such as resting-state functional MRI (rsfMRI). Interestingly, similar resting-state networks can also be detected in the anesthetized rodent brain, including the default mode-like network. This opens up opportunities for understanding the neurophysiological basis of the rsfMRI signal, the behavioral relevance of the network characteristics, connectomic deficits in diseases and treatment effects on brain connectivity using rodents, particularly transgenic mouse models. In this review, we will provide an overview on the resting-state networks in the rat and mouse brains, the effects of pharmacological agents, brain stimulation, structural connectivity, genetics on these networks, neuroplasticity after behavioral training and applications in models of neurological disease and psychiatric disorders. The influence of anesthesia, strain difference, and physiological variation on the rsfMRI-based connectivity measure will be discussed

    Escalation of Tau Accumulation after a Traumatic Brain Injury: Findings from Positron Emission Tomography.

    Get PDF
    Traumatic brain injury (TBI) has come to be recognized as a risk factor for Alzheimer's disease (AD), with poorly understood underlying mechanisms. We hypothesized that a history of TBI would be associated with greater tau deposition in elders with high-risk for dementia. A Groups of 20 participants with self-reported history of TBI and 100 without any such history were scanned using [18F]-AV1451 positron emission tomography as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Scans were stratified into four groups according to TBI history, and by clinical dementia rating scores into cognitively normal (CDR = 0) and those showing cognitive decline (CDR ≥ 0.5). We pursued voxel-based group comparison of [18F]-AV1451 uptake to identify the effect of TBI history on brain tau deposition, and for voxel-wise correlation analyses between [18F]-AV1451 uptake and different neuropsychological measures and cerebrospinal fluid (CSF) biomarkers. Compared to the TBI-/CDR ≥ 0.5 group, the TBI+/CDR ≥ 0.5 group showed increased tau deposition in the temporal pole, hippocampus, fusiform gyrus, and inferior and middle temporal gyri. Furthermore, the extent of tau deposition in the brain of those with TBI history positively correlated with the extent of cognitive decline, CSF-tau, and CSF-amyloid. This might suggest TBI to increase the risk for tauopathies and Alzheimer's disease later in life

    Association of sub-acute changes in plasma amino acid levels with long-term brain pathologies in a rat model of moderate-severe traumatic brain injury

    Get PDF
    IntroductionTraumatic brain injury (TBI) induces a cascade of cellular alterations that are responsible for evolving secondary brain injuries. Changes in brain structure and function after TBI may occur in concert with dysbiosis and altered amino acid fermentation in the gut. Therefore, we hypothesized that subacute plasma amino acid levels could predict long-term microstructural outcomes as quantified using neurite orientation dispersion and density imaging (NODDI).MethodsFourteen 8–10-week-old male rats were randomly assigned either to sham (n = 6) or a single moderate-severe TBI (n = 8) procedure targeting the primary somatosensory cortex. Venous blood samples were collected at days one, three, seven, and 60 post-procedure and NODDI imaging were carried out at day 60. Principal Component Regression analysis was used to identify time dependent plasma amino acid concentrations after in the subacute phase post-injury that predicted NODDI metric outcomes at day 60.ResultsThe TBI group had significantly increased plasma levels of glutamine, arginine, alanine, proline, tyrosine, valine, isoleucine, leucine, and phenylalanine at days three-seven post-injury. Higher levels of several neuroprotective amino acids, especially the branched-chain amino acids (valine, isoleucine, leucine) and phenylalanine, as well as serine, arginine, and asparagine at days three-seven post-injury were also associated with lower isotropic diffusion volume fraction measures in the ventricles and thus lesser ventricular dilation at day 60.DiscussionIn the first such study, we examined the relationship between the long-term post-TBI microstructural outcomes across whole brain and the subacute changes in plasma amino acid concentrations. At days three to seven post-injury, we observed that increased plasma levels of several amino acids, particularly the branched-chain amino acids and phenylalanine, were associated with lesser degrees of ventriculomegaly and hydrocephalus TBI neuropathology at day 60 post-injury. The results imply that altered amino acid fermentation in the gut may mediate neuroprotection in the aftermath of TBI

    TriFormer: A Multi-modal Transformer Framework For Mild Cognitive Impairment Conversion Prediction

    Full text link
    The prediction of mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD) is important for early treatment to prevent or slow the progression of AD. To accurately predict the MCI conversion to stable MCI or progressive MCI, we propose Triformer, a novel transformer-based framework with three specialized transformers to incorporate multi-model data. Triformer uses I) an image transformer to extract multi-view image features from medical scans, II) a clinical transformer to embed and correlate multi-modal clinical data, and III) a modality fusion transformer that produces an accurate prediction based on fusing the outputs from the image and clinical transformers. Triformer is evaluated on the Alzheimer's Disease Neuroimaging Initiative (ANDI)1 and ADNI2 datasets and outperforms previous state-of-the-art single and multi-modal methods

    Is it the time for Hepatitis E virus (HEV) Testing for Blood Donors in Qatar?

    Get PDF
    HEV is the etiologic agent of acute hepatitis E. Although HEV usually causes a self-limiting infection, the disease may develop into a chronic or fulminant form of Hepatitis. Sporadic HEV infections spread in several developed countries; however, outbreaks usually occur in regions where sanitation is low, in particular, in developing countries where water flooding frequently occurs. In addition, religious background, life style, hygienic practices, and the economic status have been linked to HEV infection. Fecal-oral is the established route of transmission, however, infections through blood transfusion were recently documented in many developed and developing countries. This recent finding raises the question: is there is a need for HEV screening prior transfusion or transplantation? Studies related to this issue, in the Middle East are scarce. Although the CDC HEV epidemiological map, classifies the Arabian Gulf countries including Qatar as endemic or highly endemic, to the best of our knowledge, no HEV population –based epidemiological study were conducted in Qatar. HEV infection is usually detected using IgM and IgG serological tests and confirmed by molecular tests for detection of viral RNA. Yet, commercially available HEV serological kits are not validated, and needs further investigation

    Tauopathy in veterans with long-term posttraumatic stress disorder and traumatic brain injury

    Get PDF
    PURPOSE: Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) have emerged as independent risk factors for an earlier onset of Alzheimer's disease (AD), although the pathophysiology underlying this risk is unclear. Postmortem studies have revealed extensive cerebral accumulation of tau following multiple and single TBI incidents. We hypothesized that a history of TBI and/or PTSD may induce an AD-like pattern of tau accumulation in the brain of nondemented war veterans. METHODS: Vietnam War veterans (mean age 71.4 years) with a history of war-related TBI and/or PTSD underwent [18F]AV145 PET as part of the US Department of Defense Alzheimer's Disease Neuroimaging Initiative. Subjects were classified into the following four groups: healthy controls (n = 21), TBI (n = 10), PTSD (n = 32), and TBI+PTSD (n = 17). [18F]AV1451 reference tissue-normalized standardized uptake value (SUVr) maps, scaled to the cerebellar grey matter, were tested for differences in tau accumulation between groups using voxel-wise and region of interest approaches, and the SUVr results were correlated with neuropsychological test scores. RESULTS: Compared to healthy controls, all groups showed widespread tau accumulation in neocortical regions overlapping with typical and atypical patterns of AD-like tau distribution. The TBI group showed higher tau accumulation than the other clinical groups. The extent of tauopathy was positively correlated with the neuropsychological deficit scores in the TBI+PTSD and PTSD groups. CONCLUSION: A history of TBI and/or PTSD may manifest in neurocognitive deficits in association with increased tau deposition in the brain of nondemented war veterans decades after their trauma. Further investigation is required to establish the burden of increased risk of dementia imparted by earlier TBI and/or PTSD
    • …
    corecore